Electives

INTEGBI C187 (2010-01-12 - 2010-01-12)

This course examines the history of human dispersal across Oceania from the perspectives of biogeography and evolutionary ecology. H. sapiens faced problems of dispersal, colonization, and extinction, and adapted in a variety of ways to the diversity of insular ecosystems. A dual evolutionary model takes into account cultural evolution and transmission, as well as biological evolution of human populations. This course also explores the impacts of human populations on isolated and fragile insular ecosystems, and the reciprocal effects of anthropogenic change on human cultures.

INTEGBI 117LF (2010-08-19 - 2010-08-19)

Laboratory will focus on studying medicinal plants from the major ecosystems and geographical regions of the world. Students will learn common names, scientific names, plant families, field identification, habitats, and ethnomedical uses of medicinal plants. How the medicinal plant is prepared, administered, and used as a phytomedicine will also be discussed. There will be reference to the phylogenetic relationships between the plant families and genera represented by the medicinal plants.

INTEGBI 132 (2014-01-14 - 2014-01-14)

Mechanisms by which key physiological priorities are maintained in healthy humans. From a basis in elementary theories of information and control, we develop an understanding of homeostasis of cellular composition, structure, and energy metabolism. We then study neural and endocrine signaling in humans, and develop the key concepts of control and homeostasis in all the major organ and multi-organ systems, including cardiovascular, respiratory, renal, metabolic, reproductive, and immune systems, growth and development, and sensory and motor systems.

INTEGBI 132 (2014-01-14 - 2014-01-14)

Mechanisms by which key physiological priorities are maintained in healthy humans. From a basis in elementary theories of information and control, we develop an understanding of homeostasis of cellular composition, structure, and energy metabolism. We then study neural and endocrine signaling in humans, and develop the key concepts of control and homeostasis in all the major organ and multi-organ systems, including cardiovascular, respiratory, renal, metabolic, reproductive, and immune systems, growth and development, and sensory and motor systems.